

Pensamento Computacional na Escola e no Currículo

Centro de Competência TIC da Universidade de Évora

Rui Gonçalo Espadeiro rge@uevora.pt

Educação e Psicologia da Universidade de Évora

O que é o pensamento computacional?

"pensamento computacional, computação, programação"

"PC é uma **abordagem para resolver problemas** de uma forma que possa ser solucionado com a **ajuda de um computador**"

"..trata-se de conceptualização, **não apenas de programação** e r**equer pensamento em múltiplos níveis de abstração**".

"conjunto de capacidades analíticas, multidisciplinares e transversais aos vários saberes, de natureza muito diversificada e de âmbito universal"

"O pensamento computacional (PC) é para todos"

(Wing)

21st-Century Skills

Foundational Literacies

How students apply core skills to everyday tasks

1. Literacy

123 2. Numeracy

3. Scientific literacy

4. ICT literacy

5. Financial literacy

Cultural and civic literacy

Competencies

How students approach complex challenges

7. Critical thinking/ problem-solving

8. Creativity

9. Communication

Collaboration

Character Qualities

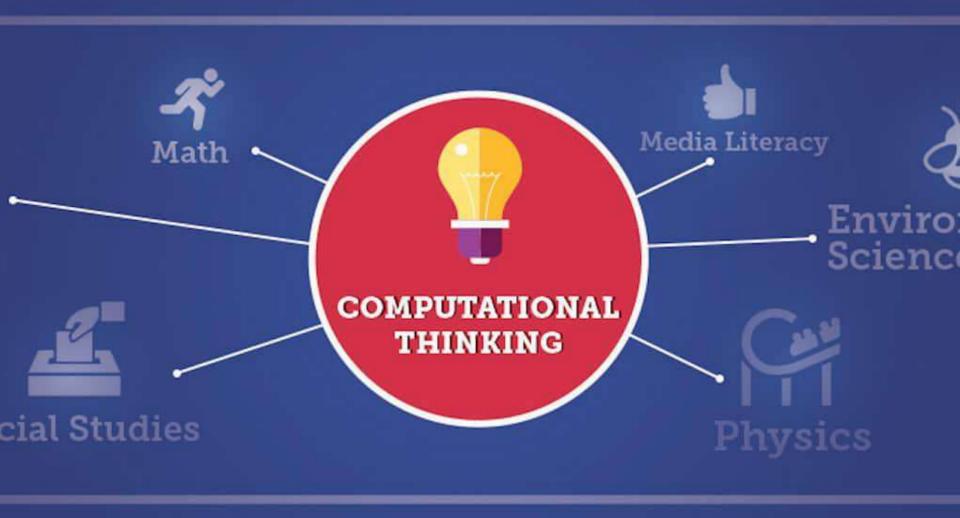
How students approach their changing environment

11. Curiosity

12. Initiative

13. Persistence/ grit

14. Adaptability


15. Leadership

16. Social and cultural awareness

Lifelong Learning

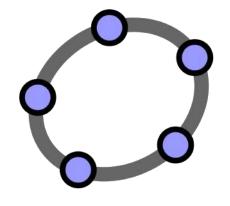
Source: World Economic Forum

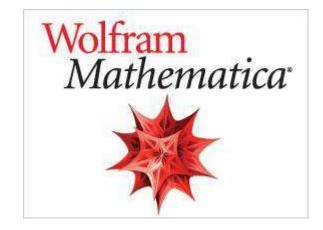
Princípios e estratégias de pensamento computacional

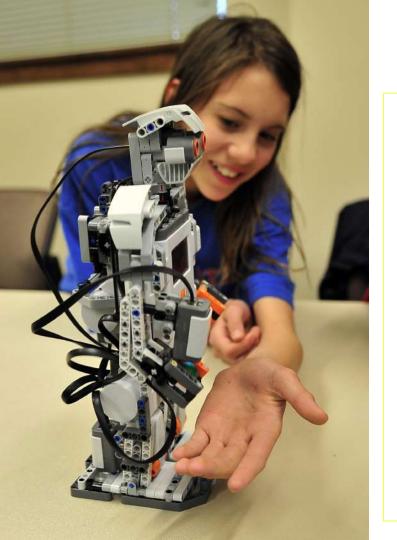
- Resolução de problemas (definição do problema, raciocínio lógico, dividir para conquistar, abstração...)
- Pensamento algorítmico (planear e acompanhar processos no tempo e no espaço)
- Definir sequências/Seguir instruções
- Pensamento paralelo
- Identificar padrões
- Abstração /Automação /Modelação/Simulação
- Pensamento crítico
- Análise e representação de dados

- ★ A introdução do PC na Escola é, progressivamente relevante numa grande quantidade de países, Portugal incluído.
- ★ As estratégias de implementação do PC na Escola, adotadas pelos vários países, são muito diversificadas: disciplinas próprias, áreas disciplinares abrangentes, curriculares ou extra-curriculares e envolvendo ou não a introdução à programação.
- ★ Predomina a diversidade de conceitos e propostas teóricas pois não existe definição de Pensamento Computacional (PC) generalizada e aceite por todos.

- ★ O ensino da programação parece ser uma das escolhas mais frequentes como estratégia de introdução ao Pensamento Computacional através da criação de jogos, construções tangíveis e robótica. Exemplos mais frequentes: Scratch, Alice, Lego Mindstorms, Agentsheets, entre outros.
- ★ A complexidade e diversidade de contextos, atores e destinatários obriga a escolhas pedagógicas cuidadosas e planeadas com detalhe o que resulta numa enorme diversidade de propostas.
- ★ Estas propostas com muita frequência centram-se na exploração de recursos, software e de plataformas digitais e objectos/artefactos tangíveis.



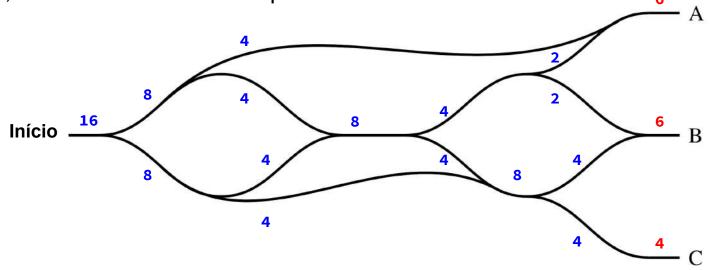




- Os conteúdos ou dimensões do PC e **as abordagens pedagógicas e métodos de ensino** parecem ser um **factor crítico** para o sucesso das iniciativas de introdução do PC na Escola.
- Alguma investigação revelou que a aprendizagem da programação (Scratch) pode ser um instrumento para melhorar a aprendizagem em outras áreas disciplinares (ciências, matemática, artes, línguas (embora não se possa generalizar).
- ★ Alguma investigação revelou que aprender programação pode contribuir para melhorar as competências de resolução de problemas, raciocínio lógico e criatividade.

10

- ★ A investigação tem revelado evidência de que as intervenções com recurso à robótica têm resultados positivos e animadores, quanto ao seu contributo para o desenvolvimento do PC em crianças e jovens.
- ★ As intervenções unplugged têm mostrado igualmente evidência de eficácia e em particular quando se trata de estudantes fora das áreas curriculares da computação.
- ★ A investigação mostra que combinar diferentes áreas programação, robótica e jogos - pode ser positiva pois cada uma destas áreas dá ênfase a componentes diferentes mas complementares do PC.



Algoritmos e truques de cartas

Uma equipa da organização de um *ultra trail* está a explorar os caminhos de uma das serras do interior do país. Sempre que um dos grupos alcança uma bifurcação num dos caminhos, metade segue por um dos lados e a outra metade segue pelo outro lado. Uma equipa de 16 começa a partir do início da subida, de acordo com o no mapa abaixo.

Quantos elemento da equipa irão alcançar o ponto B?

A investigação mostra que as intervenções devem considerar de forma clara o **nível de desenvolvimento cognitivo dos alunos** [sob pena de gerar insucesso, abandono e desinteresse].

"A programação, de per si, não deveria ser a primeira coisa a ser ensinada crianças pequenas, mas antes **actividades e projetos abrangentes e interdisciplinares**; a ideia de que todas as crianças deveriam saber programar está longe de ser consensual."

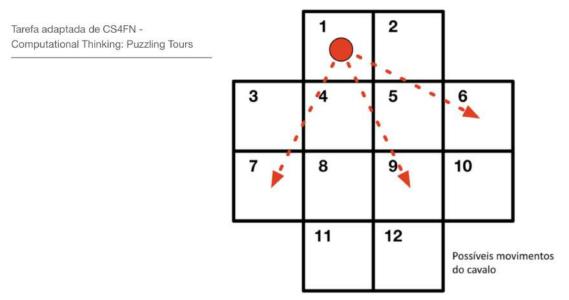
Torres de Hanói

Regras:

O objetivo deste jogo consiste em deslocar todos os discos da haste onde se encontram para uma haste diferente, respeitando as seguintes regras:

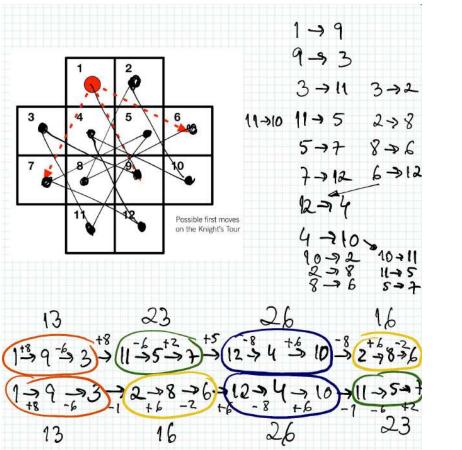
- deslocar um disco de cada vez, o qual deverá ser o do topo de uma das três hastes;
- cada disco nunca poderá ser colocado sobre outro de diâmetro mais pequeno.

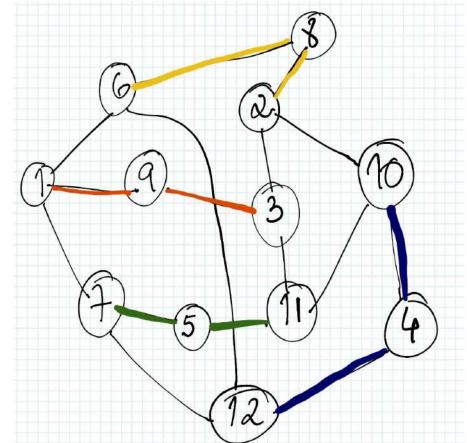
Torres de Hanói

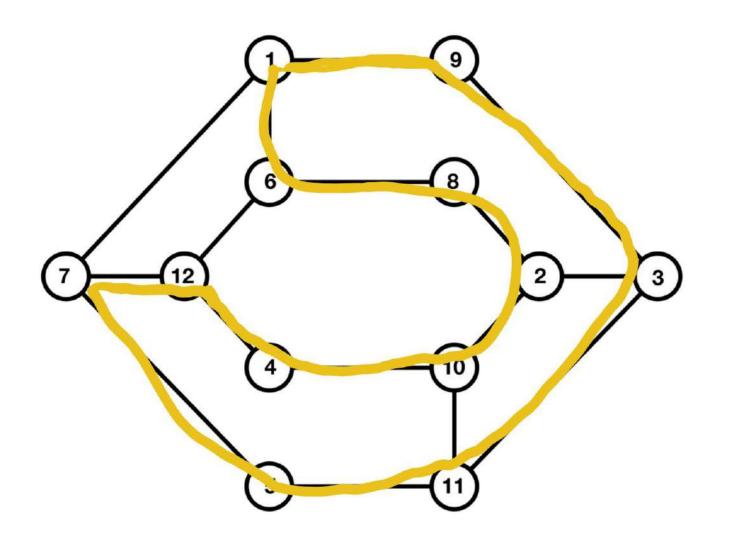


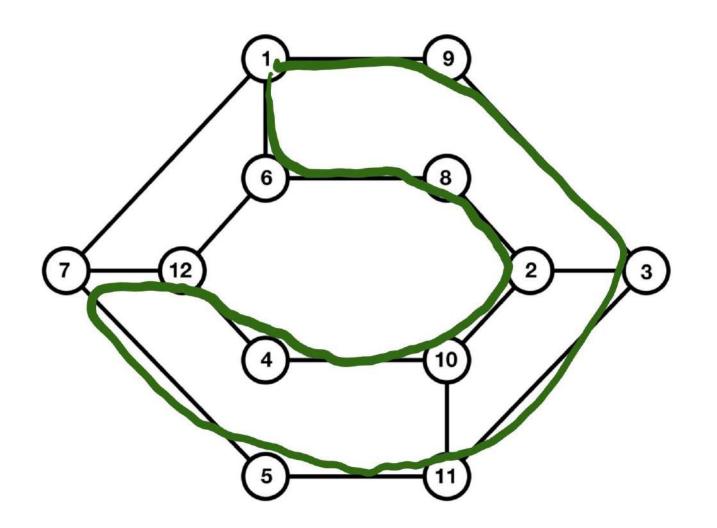
Desafios:

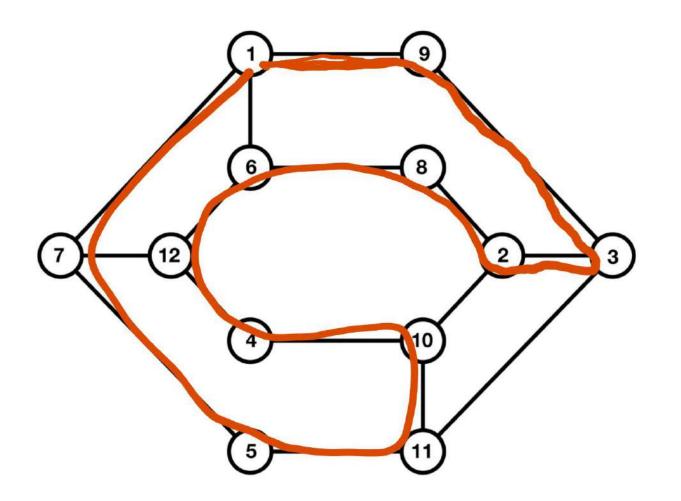
- Concretizar o objetivo do jogo com um número crescente de discos;
- Identificar o número mínimo de movimentos para alcançar o objetivo do jogo;
- Identificar estratégias de resolução do jogo;
- Identificar padrões nos movimentos que permitem alcançar o objetivo do jogo;
- Relacionar o n.º de discos com o n.º de movimentos mínimo
- Encontrar outros padrões com interesse matemático e/ou computacional


Neste desafio pretende-se que o cavalo se movimente, segundo as regras do xadrez, num pequeno tabuleiro na forma de cruz.


O quadro apresentado em seguida ilustra bem o tipo de movimentos possível.




Em cada movimento, o cavalo pula de uma casa para outra sem visitar nenhuma das que se encontram entre o ponto de partida e o de chegada nesse movimento.


O objetivo é encontrar uma sequência de movimentos que permitam ir do quadrado 1, passando por todos os outros uma e uma só vez, e termine no ponto de partida (quadrado 1)

Construcionismo, Ideias poderosas e micromundos de aprendizagem *"Low floor high ceiling" [wide walls]*: Linguagens de programação que se ajustam ao desenvolvimento da criança"

S. Papert

Construcionismo - ênfase na importância de conceber/criar artefatos e das interações sociais nos processos de aprendizagem por descoberta;aprendizagem significativa e contextualizada/ comunidades de aprendizagem

"Uma capacidade de pensamento analítica fundamental e que **é para todos,** e não apenas para os cientistas da computação ou da informática"

J. Wing

Os conceitos fundamentais [do pensamento computacional] e da programação devem **reforçar** não só o domínio da computação mas também **conceitos-chave** em outros domínios de aprendizagem (leitura, escrita matemática, ciências, expressões, música, arte, etc.)

M. Bers

M. Resnick

Rationale

- Robot Math

- ★ Um currículo assente numa perspectiva de educação holística, com a criança no centro dos processos de aprendizagem e nas preocupações com seu Bem-Estar; importância das competências cognitivas mas também sócio-emocionais e atitudinais. Importância da criatividade.
- ★ Um currículo aberto à diversidade de experiências educativas enriquecedoras (Artes, Ciência, Cultura, Tecnologia) e aberto à identidade cultural do seu contexto;
- ★ Um currículo aberto ao uso de tecnologias numa perspectiva transversal, estimulando a aquisição de competências digitais e a introdução do pensamento computacional e da programação

Pensamento Computacional na Escola e no Currículo

Centro de Competência TIC da Universidade de Évora

Rui Gonçalo Espadeiro rge@uevora.pt

